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The Schrodinger equation is used to exactly evaluate the propagator, wave
:unction, energy expectation values, uncertainty values and coherent state for a

harmonic oscillator with a time-dependent frequency and an external driving time-

dependent force. These quantities represent the solution of the classical equation

of motion for the time-dependent harmonic oscillator.

Introduction

It is well known that an exact solution of the Schrodinger equation is

possible only for special cases. For this reason, approximate methods are needed.

Exact solutions provide important tests for these approximate methods and for

v:arious models of physical phenomena. In general, the solution of the Schrddinger

equation for explicit time-dependent systems has met with limited success because

of analytical difficulties, although progress has been made during the past three

decades. 1 -5 Camiz et al6 have obtained the wave functions of a time-dependent

harmonic oscillator perturbed by an inverse quadratic potential, using the

Schr6dinger formalism and a generating function. Further, Khandekar and Lawande7

have evaluated the exact propagator and wave function for a time-dependent harmonic

oscillator, both with and without an inverse quadratic potential, using Feynman

path integrals. In addition, Jannussis et al8 have calculated the propagator for

several quantum mechanical systems with friction.
9

In a previous paper, we have evaluated the propagator, wave function, energy

expectation values, uncertainty values and transition amplitudes for a quantum

damped driven harmonic oscillator by using path integral methods. Also, we have

btained the coherent state for the damped harmonic oscillator10 and calculated the

:ropagator for coupled driven harmonic oscillators. 
1
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In this paper we discuss the exact quantum theory of a forced harmonic

oscillator with a time-dependent frequency. In Sec. II we evaluate the propagator

using the Schrodinger equation and path integral methods, and in Sec. III we

calculate the wave functions using the propagator. In Sec. IV we define the energy

operator and calculate energy expectation values. In Sec. V we obtain the

uncertainty values. In Sec. IV we determine the coherent state and its properties.

Finally, in Sec. VII we present results and a discussion.

II. Propagator

We consider a system whose classical Hamiltonian is of the form

H - 1- p2 + M 2(t) x 2 _ f(t)x , (2.1)

w:here x is a canonical coordinate, p is its conjugate momentum, W(t) is a frequency

as a function of time, M is a positive real mass, and f(t) is an external driving

force. The Lagrangian corresponding to the Hamiltonian (2.1) is

L - 1 Mx2 _ 1 M 2 (t)x2 + f(t)x (2.2)
2 2

Here, the Hamiltonian H and Lagrangian L depend on time. The classical equation of

motion for our system is

2dTX +w (t)x - f(t) (2.3)
dt2

For the case where w(t) - W (constant), the solution of Eq. (2.3) represents

harmonic motion; otherwise, it is difficult to evaluate the exact solution.

The path integral formulation of Feynman provides an alternate approach to
12

solving dynamical problems in quantum mechanics. In this approach, the usual

Schr6dinger equation is replaced by the integral equation

O(x,t) - f dx' K(x,t;x't') O(x',t') (t > t') (2.4)

with the initial condition O(x,t) - O(x',t). Here, O(x,t) is a wave function and

K(x,t; x',t') is a propagator. The propagator K(x,t; x',t') is defined by the path

integral
12

(x,t) N- 1
K(xt, x't') - lim I(xif dx. expf" S(x,t; x',t')] (2.5)

(, to) j-l
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where the integration is over all possible paths from the point (x' ,t') to the

point (x,t), and S(x,t; x',t') is the action defined as

rt

S(x,t; x',t') - I dr L(x,x,r) (2.6)

For a short time interval e, substitution of Eqs. (2.2) and (2.6) into Eq. (2.5)

gives the normalizing factor A. and the usual Schr6dinger equation:J

A. - (2iireo/M) (2.7)J

2 2i - - 02. 1 2 x2
t a V + MW 2(t) x - f(t) x i (2.8)2M ax2

Since K(x,t; x't') can be thought of as a function of the variables (x,t) or of

x' ,t'), it is a special wave function, and it satisfies Eq. (2.8):

K -22 ^21 M2( x2

ix K (x, t; x'2,t') - x K(x,t;x',t') + 1 MW (t) x K(x,t; x',t')

-f(t) x K(x,t~x',t'), (t > t') (2.9)

o_.., 1-x2
i K(x,t;x',t') - - a K(x,t; x't') + I Mw(t') X 2at' 2M ax' )

x K(x,t;x',t') - f(t') x' K(x,t;x',t')

(t' > t) (2.10)

Because the Lagrangian is quadratic, the propagator has the form 12'1 3

K(x,t; x't') - exp[a(t,t')x 2 + b(t,t')xx' + c(t,t')x'2 + g(t,t')x

+ h(t,t')x' + d(t,t')] , (2.11)

where from Eqs. (2.9) and (2.10) we can easily deduce that the coefficient of the

third and higher powers in x is zero.

Substituting Eq. (2.11) into Eqs. (2.9) and (2.10), we obtain the differential

equations
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d 210 2 ,M_. 2

dt a- a + 2 1{1 (t) (2.12)

d (bx'+g) - ,i a(bx'+g) + f(t) (2.13)
dt m

d (cx' 2 +hx,+d) - a + ih (bx'+g)2  (2.14)
dt 12.

d 2 i1±1 t,2
dc' C 2 + 2m W(t') (2.15)

d (bx+h) c (bx+h) + i (2.16)

dt' )mc (bxx)

(ax +gx+d) - 2iL (bx+h)2 + Mi c (2.17)(ad+g'd 2iM m

Equations (2.12) and (2.15) are nonlinear equations. For the case where w(t) -

a solution is easily found, but in other cases it is difficult to find an exact

solution. If q(t) obeys the differential equation

d- q(t) + w(t) q(t) - 0 (2.18)

dt

then the solutions of Eqs. (2.12)-(2.14) are

i__MM - t(2.19)
qm (t)a(t) - 2X q(t) ( .9

bi~x + g[)1' ds f(s)q(s) + b ](2.20)

b 2 ft b ft.d

c(t)x 2 h(t)x' + d(t) - inq + 0  ds + o fds

2M(fq(s )2 iK q(s)2

x dp f(p)q(p) + 1it 2 dp f(p)q(p) dr f(r)q(r) + d (2.21)
q(s) o

where b and d are constants of integration and do not depend on t, and the
0 0

solutions of Eqs. (2.15)-(2.17) are

c(t') - 2im qt (2.22)

21)l qIt '

b(t')x + h(t') - 1 [ ds f(s)q(s) + b'] (2.23)
iVfq f o ( .3
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ib' 2  td ibrtd
a(t')x 2  + g(t')x + d(t') - inq(t') "  + 0 qs)2 +  H 0 s)2

2M fq(s) Jq(s)

dp f(p)q(p) + 1 2 dp f(p)q(p) dr f(r)q(r) + d'

where b' and d' are constants of integration and independent of t'. Since only t
0 0

is a variable in Eqs. (2.19)-(2.21), we have suppressed t' in a(t,t'), b(t,t'),

etc., and we have similarly suppressed t in Eqs. (2.22)-(2.24).

In polar form we may write

q(t) - n(t)e i (t) (2.25)

where 77(t) and 7(t) are real quantities. From Eqs. (2.18) and (2.25) we note that

.(t) - (t) ;2(t) + w2(t) 7(t) _ 0 (2.26)

2,(t);(t) + q(t) y(t) - 0 (2.27)

2 (t);(t) - (2.27')

.here the constant 0 is a time-variant quantity. From Eqs. (2.26) and (2.27), we

find another form for the solution of Eq. (2.18) as

q(t) - q(t) sin(7-7') (2.28)

q(t') - n(t') sin(7-7') (2.29)

where 7 - y(t) and 7' - 7(t').

Substitution of Eq. (2.28) into Eqs. (2.19) and (2.21) gives

a(t) - [ + ; cot(7y-7)] (2.30)

ibds

b(t)x' + g(t) - Mlsin(y- ) + sin(-') ds q(s)f(s) sin(7(s)-7'] (2.31)

ib
2

c(t)x' + h(t)x' + d(t) - in[7 sin (-y')] + 20cot(v-7 )
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b Vt

+ 1iWMsn--' ds cip f(s)f(p)17(s)t7(p)

x sin(-y(s)--y' ]sin(-y(p)--y') (2.32)

Furthermore, substitution of Eq. (2.29) into Eqs. (2.22) and (2.24) gives

c(t') 2)4 + ;' cot(-Y--y') (2.33)

b(t')x + h(t') -0 + d ~~~~i(-()

(2.34)

2 - 2
a(t')x + g(t')x + d(t') - ln[,7' sin (-Y--f')] + 0cot(-Y--y')

ibp rto

I to(si~-' Jds tJdp f(s)f(p)r,(s>7(p)

* sinf-y(s).yjsin(y(p)-y] .(2.35)

From Eqs. (2.31), (2.32), (2.34) and (2.35), we deduce that the constants b0
and b' are given as

0

b 0- -M;'' X' (2. 36)

b' - M-yx .(2.37)

0

Also, from the normalization condition,

d- ln(j) . (2.38)

From Eqs. (2.30)-(2.37) and (2.27'), we find that
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a(t,t') - ' - + ; cot(-7')] (2.39)

2i4 75
C(t,t') - [ + y'cot(7-7,.)] (2.40)

b(t -,°) -iM n(Z-. ) (2.41)

g(tt') - t ds - sin[7(s)-y] (2.42)X) sin(-y-y') f ,t A(s)

h(t,t') - i f 5 ds (s) sin[7--y(s)] (2.43)

t td(tt') - ds f sin[7-7(s)] dp f

4)2 sin(-y-7') t' h s)

x sin(7(p)-7'] (2.44)

Inserting Eqs. (2.39)-(2.44) in Eq. (2.11), we obtain the propagator for the forced

time-dependent harmonic oscillator as

K(x,t;x't') = [2i sin(7-7)1

exp[i ( 2 x 2

4exp I iM F-(;x + ;'x') cos(7-y') 2h;' XX'
X x 2X sin(-y--y') L.

+ Axf ds f s sin[7(s)-7']
MX d ./(s)

+ t' ds fs sin[I-7(s)]

- f ds fs) sin[7-7(s)] 5 dp f(TD) sin[7(p)-7'I]}
M t (s) ft AP

(2.45)

where the unprimed and the primed variables denote the quantities which are

functions of time t and t', respectively. It may be easily verified that for the

case where w(t) is a real positive constant wo , we have q(t) - i and 7(t) - w t,
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and the propagator of Eq. (2.45) reduces to the usual expression for a forced

harmonic oscillator. 
12

ITI. Wave function

W'e now rewrite the propagator in another form in order to derive the wave

function:

K(x,t: xt) - [ Mi i(--y)

x i_ ep[ Bx 2 + xr s fs)cos(-7-(s)]l

- exp. x( +~ VJy x ds f(s)

~ (.s)

02v (s))
X + x IVd - (s)s))]I

X4 sxpin (-') 1 x - -1 fjds fs sin[-(s)] 2

Al [.M~'-~ f ds -Ls sin(7'--v(s)] ]2]
xm 1x[ {ct-Y ' -f ds ***sA sin[7-y(s)]

* [J;X' --1 fd. fs) sn[7/7(s) ]

* cot(-vY-')[f dp f D sin[7I-7(p)I] 2

'IO (p)

+ si 2 t-' Jd sin(--t-y)UP sin[-y'--y(p)]

sin t ds ) ds sin(-7-(s)] J dp f2

x sin(7y(p)--y'I} (3.1)



-

x 2 + M ,. f Jds A (S) COSt'V-7(s)]]

-~ ~ FnZ. J;#x ~ .~ ds ffLS.) cosW-7-(s)]l
L7M f -A(s)

xp f F x f tds f's sinflty7(s)]

[T -Y M Ad fs il'V(S) I]}

A IXI f 
-s -Q 4 si.y- ] 14(s

*+x -M x Jdss fL s) sin((y.yyss]]2

+ [- fx 1 *ftds f(s) sin([-y(s) 2L~x

1ft'ds f(s) sinvty'--y(s)]]} e- 6 (t) e i(t') (3.2)

-,;here

-(l O(t) - fcot(---y')[[ds fk2. sin(y--y(s) ]2

+ cot(vY-v')Uo ds -s sin(-' -(s) 2 + 2siy-)

f~s /-y(s)

x{ds - sin[7-7(s)] J.d sin(T'-y(p)]

ft ds f/(s) Ji[-7s]to y; f 1)sn7p-f (3.3)

ate us introduce Mehier's formula, 
1 4
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expf-(X 2 + Y2 _ -2XY)/(l-Z 2 )1, - e -(X 2+Y 2) Zn H (X)H (Y) (3.4)
.1 z n-0 2 n'

... ere

x- Ui [ - IJ sin 7 '7(s)] . (3.6)

Z - e-(-, (3.7)

Substituting Eqs. (3.4)-(3.7) in Eq. (3.2), we obtain

K(x,t; x' ,t) - 0*(x,t) V) (x' ,t') ,(3.8)

n-0

,.,here

ri !*L iM~ 2 2 td f(s)

V [ A~'()]]

"(ep ~[i - ft J s -fL2. sinI-y--f(s)I}

n [x MA (s)

" e 2(3.9)

Horeover, we may write

~(x,t) - exp(i[(r) (n I 7t] (x,t) ,(3.10)

,,,here

O(x,t) - [2 n n 7x x 241 -m ! sAs o(-(
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" exp{ fds ff.s) sin[.I7(s) ]]2}
e7(s)

" H P i fds -Q1 s in(-(s)]}] . (3.11)
n A (s)

In Eq. (3.10), the wave function n (x,t) is merely a unitary transformation of

n (x,t), and thus n (x,t) satisfies all the properties associated with n (x,t):

S dx 0*, -<min> - dx 4* n - 6 (3.12)

The expectation value of a given operator 0 is

<mOn>= dx 0* N = dx 400n (3.13)

IV. Energy expectation values

For the forced time-dependent harmonic oscillator system, both the Hamiltonian

and Lagrangian have the units of energy but depend on time. We must therefore find

a time-invariant energy operator. If P(t) is a particular solution of Eq. (2.3),

we have

d 2

(x-B) i- (t) (x-j3) - 0 ,(4.)

dt
2

and from Eqs. (2.26) and (2.27') we note that

+ (t) - 2/3(4.2)

From Eqs. (4.1) and (4.2), we get the following expression for the energy:

E (vqp-tmix)2 + (M~x-qp)(A-q8) + M(fit7-i)2 +* M 0 11 B 2.) 2 (4.3)

Because Eq. (4.3) is time invariant, we can use it for the quantum mechanical

energy operator,

M 2n 2 a x 2  M..2 .2 2 (
Eop 2M a2 + 2 7' +? )x - 2 (2xa+l)

+ - + Mtx) + Mn;20x + q + M(O-n) (4.4)

ax2
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Equation (3.11) now simplifies to the expression

n (X,t) t e i '  2 + i A x(x
'

e e H [6(x- 3)]

(2nnf e ex+Bx Hn[5(x-l)] (4.5)

where

6 - (MY/A') (4.6)

A(t) - M___ J (4.7)

'\(t) - ds Lds ) cos(--(s)] (4.8)
.i;( s)

)(t) - ds 1(s) sin[-y-y(s)] (4.9)jy(s)

A- ip - 6 2/2 (4.10)

2
B -iA + 6 (4.11)

.iere, 3(t) is a particular solution of Eq. (2.3).

In order to evaluate the energy expectation E - <mjE In>, we perform them,n op

following calculations:

xln> - I6 [ n-+TIn+l> + IiIn-l>] (4.12)
2 i6

In> - 1 [j(n+2)(n+l)In+2> + (2n+l)In> + -n(n-l)jn-2>] (4.13)

25

pin> - M 2(n+l)In> + " B ln> + h(6+6) 2In-l> (4.14)

2 -_2 2A 2 J(n+2)(n+l)In+2> + 2,- A ,fn-ln> + 2(A+&2)(2n+l)In>P In> - -[y iT62+2(+)(nl n

2 B 2 2
66
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xpjn> - ( (n+2)(n+l)In+2> + - V_-I n+l> + [A(2n+l)+njIn>

+ B /nn-l> + (-+l),n(n+1In-2>) (4.16)
6-

pxln> - xpin> + In> (4.17)

Substituting Eqs. (4.6)-(4.17) into Eq. (4.4), we directly obtain the energy

expectation values as

2.
E - E - (i y)(2n+i)
n,n n

- 00((n) (4.18)

This energy expectation value is a time-invariant quantity.

V. Uncertainty values

The uncertainty product defined as

(AxAP)m,n - ([(<mIx 2n> - <mlxln> ) (<mIx 2In> - <mlxln> )

x [(<mInp 2 n> - <mlpln>2) *(<mjp 2 1n> _ <mIpIn>12 ) . (5.1)

Inserting Eqs. (4.12)-(4.15) into Eq. (5.1), we obtain

.2
(Ax'P)n,n - (1 + ' (n+ )f (5.2)

7,7

(AxAp)n n (. + 2  2

n+2,n " .2 2" (n+2)(n+l) i (5.3)

2

(Ax AP) - (1 + .- n F ) (5.4)

n,n+2 .2 2~ nn1 '

VI. Coherent states of the time-dependent harmonic oscillator

First, we construct the creation operator at and destruction operator a. For

a forced time-dependent harmonic oscillator, it is not possible to construct a and

but we can construct a and at for the time dependent harmonic oscillator. From

Eqs. (4.12) and (4.14), we obtain



14

at - () [(i4 + L.)x - ip- (6.1)2) 7; M;

a - [(I - i ) x + --  (6.2)

TV M;

From Eqs. (6.1) and (6.2), we can represent (x,p) in terms of (at,a) as

x - (_.Z_) (at+a) (6.3)

2M;y

P (- (f' [(' + i)at + (L - i)a] (6.4)

Also from Eqs. (6.1) and (6.2), if [x,p] - iX we see that

[ata] - 1 . (6.5)

Conversely, from Eqs. (6.3) and (6.4), if [at,a] - i we note that [x,p] - iX.

The coherent state can be defined by the eigenstate of the nonhermition
15

operator a,

ala> = ala> (6.6)

Let us find the coordinate representation of the coherent state. From Eqs. (6.2)

and (6.3), we have

IL [ ( x + * <x'~l> - a<x ja> (6.7)

We solve this equation and change the variable x' into x for convenience,

<xla> -N exp [ (-i + iD-.) x2 +a (6.8)

[2X( )? x Z~)

We choose the constant of integration N such that

T dx I<xla>l 2 - 1 . (6.9)

Then, we find the eigenvector of the operator a in the coordinate representation

1"> as
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<X I exp[ (-l + iL) x 2 ax -12 12 (6.10)
77

Next, we show that a coherent state is a minimum uncertainty state. From Eqs.

(6.3), (6.4) and (6.6) and their adjoints, we evaluate the expectation values of x,2 2
p, x and p in the state Ia>:

<aixla> - ( X .) (a +a) (6.11)
2My

<aipla> - (• [ + i)a* + - i)a] (6.12)

<ix 21=> M . <al a+2+a2+aa ++a+ al>
2M;

X (a _ *2+a 2+2aa*+) (6.13)

2M;

+ )2  *2 7.

<alp 2a> M; + )2a2
2

'77 77

+ [(L)2 + l](2aa +1)) (6.14)

77

The uncertainty value is

Axap - [(<aix 21a> - <alxla>)(<aip2la> _ <Iapl>>)]
h

- X/2 [1+(.)2 ] , (6.15)
'77

which is the minimum value allowed by Eq. (5.2).

VII. Results and discussion

In the previous sections, we have obtained the propagator, wave function,

energy expectation values, uncertainty values and coherent state for a quantum

forced time-dependent harmonic oscillator. These quantities represent the solution

of the classical equation of motion for the time-dependent harmonic oscillator. If

we set f(t) equal to zero, then our solution is correct for the time-dependent

harmonic oscillator. Setting w(t) - c gives results for the forced harmonic
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oscillator. For the case where f(t) - 0 and w(t) - w , our results are those of

the simple harmonic oscillator.

For the explicit time-dependent system, we need to consider the quantum

mechanical operator. In our work, the Hamiltonian, Lagrangian and mechanical

energy have the units of energy, but these are not time invariant. Yet, in order

to solve macroscopic physical problems, we use time-invariant operators. For this

reason, we have derived the energy operator from the classical equation of motion

and used it to calculate energy expectation values. Our energy operator is similar
1,2

to the Ermakov-Lewis invariant operator. Our quantum energy expectation vlaues

are time-independent quantities, and our uncertainty values are consistent with

Heisenberg's uncertainty principle. Yet, our uncertainty values are time

dependent, in contrast to those of time-independent systems.

Since it is not possible to construct a coherent state for the forced time-

dependent harmonic oscillator, we have constructed it for the time-dependent

harmonic oscillator. In general, the coherent state is a minimum uncertainty

state, which is also true for our system.

Time-dependent systems are observed in various physical experiments. Two

general types of such systems are: that which is formed through its own

environmental conditions, and that which is formed when external forces are added.

In regard to the second type, various experiments are being carried out to see how

an applied, time-dependent electric, magnetic or other field can alter the physical

properties of materials such as semiconductors and superconductors. Experiments

show that a system becomes time dependent when a time-dependent electric or

magnetic field (such as a.c.) is applied. However, obtaining the quantum

mechanical solution by a direct method is not easy mathematically. One way of

obtaining a solution is to use the propagator method as indicated in this paper,

where the relevant equations are those of a time-dependent harmonic oscillator.

Our results, which are exact for one dimension, can be extended to two or more

dimensions, and they can also be applied to time-dependent macroscopic systems.

One example of an extension to two dimensions would be to solve the motion of a

quantum electron in a time-dependent magnetic field.

Acknowledgments

KWY and CIU acknowledge financial support from the Korea Science and

Engineering Foundation and the Basic Science Research Institute (BSRI), Ministry of

Education 1989, Republic of Korea. This research was also supported by the Office

of Naval Research and the National Science Foundation under Grant CHE-9016789.



17

References

i. H. R. Lewis, Jr., Phys. Rev. Lett. 18, 510, 636 (1967).

2. H. R. Lewis, Jr., J. Math. Phys. 9, 1976 (1968).

3. P. G. L. Leach, J. Math. Phys. 10, 1902 (1977).

4. J. R. Burgan, M. R. Felx, E. Fijalkow and A. Munier, Phys. Lett. A 74, 11

(1979).

5. J. G. Hartly and J. R. Ray, Phys. Rev. A 2_4, 2873 (1981).

6. P. Camiz, A. Gerardi, C. Marchioro, E. Presutti and E. Scacciatelli, J. Math.

Phys. _U, 2040 (1971).

7. D. C. Khandekar and S. V. Lawande, J. Math. Phys. 16, 384 (1975).

8. A. D. Jannussis, C. N. Brodimas and A. Streclas, Phys. Lett. A 74, 6 (1979).

9. C. I. Um, K. H. Yeon and W. H. Kahng, J. Phys. A 20, 611 (1987).

10. K. H. Yeon, C. I. Um and T. F. George, Phys. Rev. A 36, 5287 (1987).

11. K. H. Yeon, C. I. Um, W. H. Kahng and T. F. George, Phys. Rev. A 38, 6224

(1988).

12. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-

Hill, New York, 1965).

13. G. J. Papadopoulous, Phys. Rev. D _U, 2870 (1975).

14. A. Erdelyi, Higher Transcendental Functions, Vol. 2 (McGraw-Hill, New York,

1953), p. 194.

15. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York,

1973).



FY91 Abstracts Distribution List for Solid State & Surface Chemistry

Dr. Paul Ballentine Dr. Robert Gedridge Dr. Fred King

CVC Products Code 3854/Chemistry Division Dept. of Chem, P0 Box 6045

525 Lee Rd., P. 0. Box 1886 Naval Weapons Center West Virginia University

Rochester, NY 14627 China Lake, CA 93555-6001 Morgantown, WV 26506-6045

Dr. Andrew Baronavski Dr. Paul Hansma Dr. Stephen Lieberman

Code 6111/Chemistry Division Department of Physics Marine Evn. Branch/Code 522

Naval Research Laboratory University of California Naval Ocean Systems Center

Washington, D.C. 20375-5000 Santa Barbara, CA 93106 San Diego, CA 92152

Dr. John Crowell Dr. John Hemminger Dr. Horia Metiu

Department of Chemistry Department of Chemistry Department of Chemistry

University of California University of California University of California

La Jolla, CA 92093 Irvine, CA 92717 Santa Barbara, CA 93106

Dr. Frank DiSalvo Dr. Leonard Interrante Dr. Daniel Neumark

Department of Chemistry Department of Chemistry Department of Chemistry

Cornell University Rensselaer Polytech. Inst. University of California

Ithaca, NY 14853 Troy, NY 12181 Berkeley, CA 94720

Dr. John Eyler Dr. Steven George Dr. Larry Kesmodel

Department of Chemistry Department of Chemistry Department of Physics

University of Florida Stanford University Indiana University

Gainesville, FL 32611 Stanford, CA 94305 Bloomington, IN 47403

Dr. Paul Barbara Dr. Robert Hamers Dr. Max Lagally

Department of Chemistry Department of Chemistry Dept. Metal. & Min. Eng.

University of Minnesota University of Wisconsin University of Wisconsin

Minneapolis, MN 55455-0431 Madison, WI 53706 Madison, WI 53706

Dr. R.P.H. Chang Dr. Charles Harris Dr. M.C. Lin

Dept. Mat. Sci. & Eng. Department of Chemistry Department of Chemistry

Northwestern University University of California Emory University

Berkeley, CA 94720 Atlanta, GA 30322

Dr. Mark D'Evelyn Dr. Roald Hoffmann Dr. Larry Miller

Department of Chemistry Department of Chemistry Department of Chemistry

Rice Univ., P. 0. Box 1892 Cornell University University of Minnesota

Houston, TX 77251 Ithaca, NY 14853 Minneapolis, MN 55455-0431

Dr. Arthur Ellis Dr. Eugene Irene Dr. David Ramaker

Department of Chemistry Department of Chemistry Department of Chemistry

University of Wisconsin 
University of North Carolina 

George Washington University

Madison, WI 53706 Chapel Hill, NC 27514 Washington, D.C. 20052

Dr. James Garvey Dr. Zakya Kafafi Dr. Gary Rubloff

Department of Chemistry Code 6551 IBM T.J. Watson Res. Center

Depa/tmftof CNaval Research Laboratory P. 0. Box 218

Buffalo, NY 14214 Washington, DC 20375-5000 Yorktown Heights, NY 10598



Dr. Richard Smalley Dr. R. Stanley Williams
Department of Chemistry Department of Chemistry
Rice Univ., P.O. Box 1892 University of California
Houston, TX 77251 Los Angeles, CA 90024

Dr. Galen Stucky Dr. Aaron Wold
Department of Chemistry Department of Chemistry
University of California Brown University
Santa Barbara, CA 93106 Providence, RI 02912

Dr. William Unertl Dr. John Yates
Lab. for Surface Sci. & Tech. Department of Chemistry
University of Maine University of Pittsburgh
Orono, ME 04469 Pittsburgh, PA 15260

Dr. John Weaver Dr. Robert Whetten
Dept. of Chem. & Mat. Sciences Department of Chemistry
University of Minnesota University of California
Minneapolis, MN 55455 Los Angeles, CA 90024

Dr. Howard Schmidt Dr. Nicholas Winograd
Schmidt Instruments, Inc. Department of Chemistry

2476 B91sover, Suite 234 Pennsylvania State University

Houston, TX 77005 University Park, PA 16802

Dr. Gerald Stringfellow Dr. Vicki Wysocki

Dept. of Materials Sci. & Eng. Department of Chemistry

University of Utah VA Commonwealth University

Salt Lake City, UT 84112 Richmond, VA 23298-2006

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, MI 39217-0510

Dr. Terrell Vanderah
Opt. Elec. Matls/Code 3854
Naval Weapons Center
China Lake, CA 93555

Dr. Brad Weiner
Department of Chemistry
University of Puerto Rico
Rio Piedras, PR 00931

Dr. Paul Weiss
Department of Chemistry
Pennsylvania State UniversityUniversity Park, PA 16802


